Auto.ru Parser Quick Start
Get up and running with the Auto.ru parser in minutes. Extract comprehensive automotive data from Russia's leading marketplace with just a few simple steps.
Step-by-step guide to get started with Auto.ru automotive data extraction - from API setup to first data extraction in minutes
๐ Prerequisitesโ
Before you begin, ensure you have:
- CarAPIS Account: Sign up at dashboard.carapis.com
- API Key: Get your API key from the dashboard
- Basic Programming Knowledge: Familiarity with HTTP requests or our SDKs
Free Tier Available
Start with our free tier that includes 1,000 requests per day. No credit card required!
๐ Step 1: Get Your API Keyโ
Sign Up for CarAPISโ
- Visit dashboard.carapis.com
- Click "Sign Up" and create your account
- Verify your email address
- Navigate to the API Keys section
Generate API Keyโ
# Your API key will look like this
auto_ru_parser_sk_1234567890abcdef1234567890abcdef
:::
info API Key Security Keep your API key secure and never share it publicly. You can regenerate it anytime from the dashboard. :::
๐ง Step 2: Choose Your Integration Methodโ
Option A: Python SDK (Recommended)โ
# Install the CarAPIS Python SDK
pip install carapis
# Initialize the client
import carapis
client = carapis.Client(api_key="YOUR_API_KEY")
# Test the connection
try:
# Get available brands
brands = client.auto_ru.get_brands()
print(f"Connected! Found {len(brands)} brands")
except Exception as e:
print(f"Connection failed: {e}")
Option B: JavaScript/Node.js SDKโ
// Install the CarAPIS JavaScript SDK
npm install carapis
// Initialize the client
const CarAPIS = require('carapis');
const client = new CarAPIS('YOUR_API_KEY');
// Test the connection
async function testConnection() {
try {
const brands = await client.auto_ru.getBrands();
console.log(`Connected! Found ${brands.length} brands`);
} catch (error) {
console.error('Connection failed:', error);
}
}
testConnection();
Option C: Direct HTTP APIโ
# Test the API with curl
curl -X GET "https://api.carapis.com/v1/auto-ru/brands" \
-H "Authorization: Bearer YOUR_API_KEY"
๐ Step 3: Your First Data Extractionโ
Search for Vehiclesโ
# Search for Lada Vesta vehicles from 2020 onwards
search_params = {
"brand": "Lada",
"model": "Vesta",
"year_from": 2020,
"price_max": 1500000,
"region": "ะะพัะบะพะฒัะบะฐั ะพะฑะปะฐััั"
}
# Execute the search
listings = client.auto_ru.search(**search_params)
print(f"Found {len(listings)} Lada Vesta vehicles")
for listing in listings[:3]: # Show first 3 results
print(f"- {listing['title']}: {listing['price']} โฝ")
Get Detailed Listing Informationโ
# Get detailed information about a specific listing
listing_id = "auto_ru_123456789"
detailed_listing = client.auto_ru.get_listing(listing_id)
print(f"Vehicle: {detailed_listing['title']}")
print(f"Price: {detailed_listing['price']} โฝ")
print(f"Mileage: {detailed_listing['mileage']} km")
print(f"Location: {detailed_listing['location']['city']}")
Extract Market Dataโ
# Get market analysis for Toyota vehicles
market_data = client.auto_ru.get_market_data(
brand="Toyota",
period="30d"
)
print(f"Market Overview:")
print(f"- Total Listings: {market_data['market_overview']['total_listings']}")
print(f"- Average Price: {market_data['market_overview']['average_price']} โฝ")
print(f"- Price Trend: {market_data['market_overview']['price_trend']}")
๐ Step 4: Advanced Usage Examplesโ
Batch Processingโ
# Process multiple searches efficiently
brands_to_search = ["Lada", "Toyota", "Volkswagen"]
results = {}
for brand in brands_to_search:
listings = client.auto_ru.search(
brand=brand,
year_from=2020,
limit=50
)
results[brand] = {
"count": len(listings),
"avg_price": sum(l['price'] for l in listings) / len(listings) if listings else 0
}
for brand, data in results.items():
print(f"{brand}: {data['count']} listings, avg price: {data['avg_price']:.0f} โฝ")
Price Monitoringโ
# Monitor price changes for specific vehicles
def monitor_prices(listing_ids, check_interval=3600): # Check every hour
import time
while True:
for listing_id in listing_ids:
listing = client.auto_ru.get_listing(listing_id)
price_history = client.auto_ru.get_price_history(listing_id)
current_price = listing['price']
previous_price = price_history['price_history'][-2]['price'] if len(price_history['price_history']) > 1 else current_price
if current_price != previous_price:
change = current_price - previous_price
print(f"Price change for {listing['title']}: {change:+,} โฝ")
time.sleep(check_interval)
Geographic Analysisโ
# Analyze market by region
regions = ["ะะพัะบะพะฒัะบะฐั ะพะฑะปะฐััั", "ะกะฐะฝะบั-ะะตัะตัะฑััะณ", "ะะพะฒะพัะธะฑะธััะบ"]
regional_data = {}
for region in regions:
listings = client.auto_ru.search(
brand="Lada",
region=region,
limit=100
)
if listings:
avg_price = sum(l['price'] for l in listings) / len(listings)
regional_data[region] = {
"listings_count": len(listings),
"average_price": avg_price
}
# Display results
for region, data in regional_data.items():
print(f"{region}: {data['listings_count']} listings, avg: {data['average_price']:.0f} โฝ")
๐ง Step 5: Error Handlingโ
Robust Error Handlingโ
import time
from carapis.exceptions import RateLimitError, APIError
def safe_api_call(func, *args, max_retries=3, **kwargs):
"""Execute API call with retry logic"""
for attempt in range(max_retries):
try:
return func(*args, **kwargs)
except RateLimitError as e:
if attempt < max_retries - 1:
wait_time = (2 ** attempt) * 60 # Exponential backoff
print(f"Rate limited. Waiting {wait_time} seconds...")
time.sleep(wait_time)
else:
raise e
except APIError as e:
print(f"API Error: {e}")
raise e
except Exception as e:
print(f"Unexpected error: {e}")
raise e
# Use the safe wrapper
try:
listings = safe_api_call(client.auto_ru.search, brand="Lada", limit=50)
print(f"Successfully retrieved {len(listings)} listings")
except Exception as e:
print(f"Failed to retrieve listings: {e}")
๐ Step 6: Data Export and Analysisโ
Export to CSVโ
import pandas as pd
# Collect data
listings = client.auto_ru.search(brand="Lada", limit=1000)
# Convert to DataFrame
df = pd.DataFrame(listings)
# Export to CSV
df.to_csv('lada_listings.csv', index=False, encoding='utf-8')
print(f"Exported {len(df)} listings to lada_listings.csv")
Basic Market Analysisโ
import pandas as pd
import matplotlib.pyplot as plt
# Get market data
listings = client.auto_ru.search(brand="Toyota", limit=500)
df = pd.DataFrame(listings)
# Analyze price distribution
plt.figure(figsize=(10, 6))
df['price'].hist(bins=30, edgecolor='black')
plt.title('Toyota Price Distribution')
plt.xlabel('Price (โฝ)')
plt.ylabel('Frequency')
plt.show()
# Analyze by year
year_analysis = df.groupby('year')['price'].agg(['count', 'mean', 'std'])
print(year_analysis)
๐ Step 7: Production Deploymentโ
Environment Variablesโ
# Set your API key as an environment variable
export CARAPIS_API_KEY="your_api_key_here"
# Use environment variable in your code
import os
import carapis
api_key = os.getenv('CARAPIS_API_KEY')
client = carapis.Client(api_key=api_key)
Rate Limiting Best Practicesโ
# Implement rate limiting for production use
import time
class RateLimitedClient:
def __init__(self, client, requests_per_minute=60):
self.client = client
self.requests_per_minute = requests_per_minute
self.request_times = []
def _wait_if_needed(self):
now = time.time()
# Remove requests older than 1 minute
self.request_times = [t for t in self.request_times if now - t < 60]
if len(self.request_times) >= self.requests_per_minute:
sleep_time = 60 - (now - self.request_times[0])
if sleep_time > 0:
time.sleep(sleep_time)
self.request_times.append(time.time())
def search(self, *args, **kwargs):
self._wait_if_needed()
return self.client.auto_ru.search(*args, **kwargs)
# Use the rate-limited client
rate_limited_client = RateLimitedClient(client)
๐ Troubleshootingโ
Common Issuesโ
Rate Limiting
If you encounter rate limit errors, implement exponential backoff:
- Wait 1 minute, then retry
- If still limited, wait 2 minutes
- Continue doubling wait time
Authentication Errors
- Verify your API key is correct
- Check that your account is active
- Ensure you're using the correct endpoint
Performance Optimization
- Use batch operations when possible
- Implement caching for frequently accessed data
- Monitor your request usage in the dashboard
๐ Next Stepsโ
Explore Advanced Featuresโ
- API Reference - Complete endpoint documentation
- Market Analysis - Understand market trends
- Features - Discover all available capabilities
- FAQ - Common questions and solutions
Integration Examplesโ
- Web Application: Build a car listing website
- Mobile App: Create a vehicle search app
- Analytics Dashboard: Monitor market trends
- Price Alert System: Track price changes
Support Resourcesโ
- Documentation: docs.carapis.com
- API Status: status.carapis.com
- Community: Discord
- Email Support: api-support@carapis.com
Ready to start extracting Auto.ru data? Get your API key now and begin building powerful automotive applications with real-time Russian market data.